Registro de Contrato de Acervo Técnico sob forma de ART Nr : 6962438 Anotação de Responsabilidade Técnica - Lei Federal 6496/77

Conselho Regional de Engenharia e Agronomia do RS

 Dados da ART
 Agência/Código do Cedente
 065-48/015117596
 Nosso Número:

 Tipo:EXECUÇÃO DA OBRA
 Participação Técnica:
 INDIVIDUAL/PRINCIPAL

Convênio: NÃO É CONVÊNIO Motivo: NORMAL

Contratado

Carteira: RS123294 Profissional: LAURA PIZZOLOTTO DE CONTI E-mail: lauradeconti@hotmail.com

RNP: 2202066381 Título: Engenheira Agrônoma

Empresa: NENHUMA EMPRESA Nr.Reg.:

Contratante

Nome: SECRETARIA ESTADUAL DO MEIO AMBIENTE E-mail:

Endereco: AVENIDA BORGES DE MEDEIROS 261 12 ANDAR Telefone: CPF/CNPJ:

Cidade: PORTO ALEGRE Bairro.: CENTRO HISTÓRICO CEP: 90020021 UF: RS

Identificação da Obra/Serviço

Proprietário: SECRETARIA ESTADUAL DO MEIO AMBIENTE

Endereço da Obra/Serviço: AVENIDA BORGES DE MEDEIROS 261 12 ANDAR CPF/CNPJ:

Cidade: PORTO ALEGRE Bairro: CENTRO HISTÓRICO CEP: 90020021 UF:RS

Finalidade: OUTRAS FINALIDADES Dimensão(m²): Vir Contrato(R\$): 1,00 Honorários(R\$):

Data Início: 01/08/2013 Prev.Fim: 01/08/2014 Custo da obra(R\$): 1,00 Ent.Classe: SENGE/RS

Atividade Técnica Descrição da Obra/Serviço Unid. Ouantidade Projeto e Execução Barragem 1.00 UN Projeto e Execução RDH - BARRAGEM 1.00 UN Projeto e Execução Açudes 2.00 UN Projeto e Execução RDH - AÇUDE 2.00 UN Levantamento Topografia * 1.00 UN

FINALIZE A ART PARA GERAR O CÓDIGO DE BARRAS.

	Declaro serem verdadeiras as informações acima	De acordo
Local e Data	LAURA PIZZOLOTTO DE CONTI	SECRETARIA ESTADUAL DO MEIO AMBIENTE
	Des Essionel	Contratorio

Profissional

Contratante

Vazão Máxima

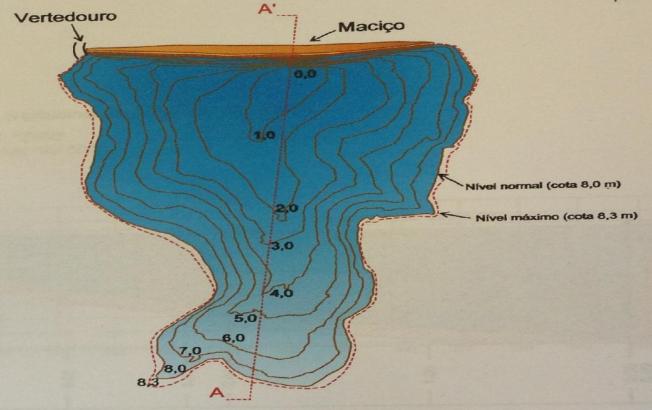
Dados Hidrológicos:

•	Area da Bacia de Contribução (S)	 100 ha = 1 km²
•	Área da Bacia de Acumulação	 9,48 ha = 0,0948 km²

• Precipitação Pluviométrica máxima em 24 horas (H) ----- 240 mm

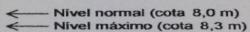
• Coeficiente de Deflúvio (R) ----- 0,25

Cálculo:

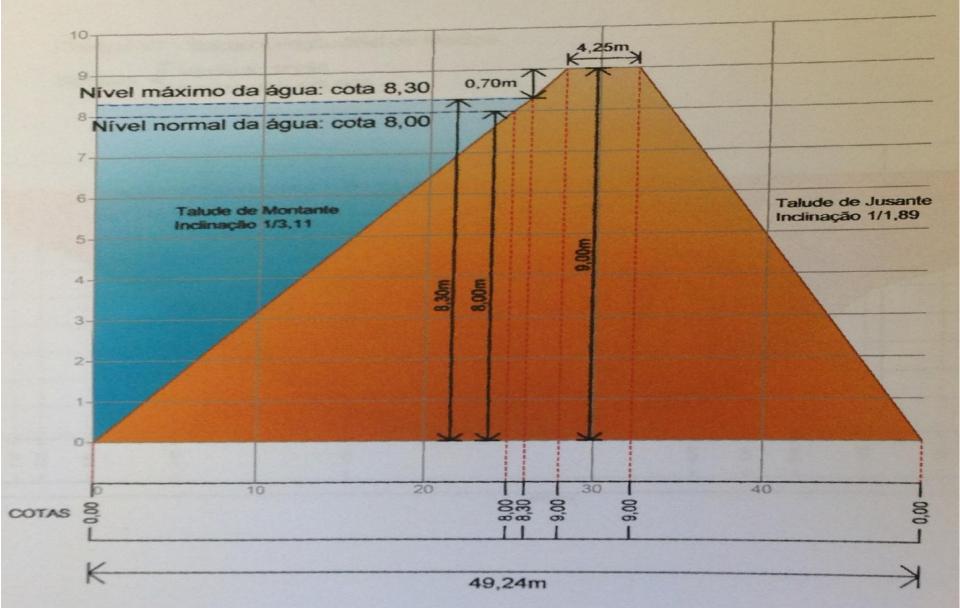

Qmáx =
$$[(S x H x R) / 86.400] x 1000$$

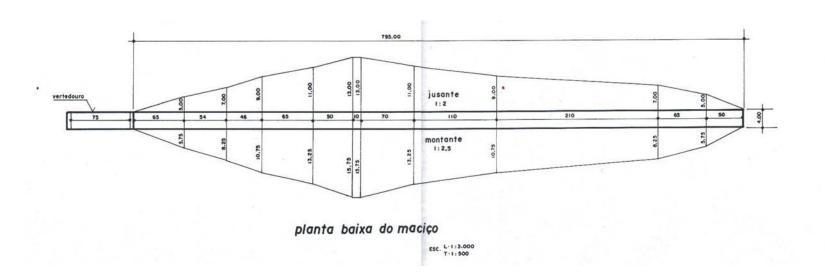
Qmáx = $[(1 x 240 x 0,25) / 86.400] x 1000$
Qmáx = $0,694 \text{ m}^3/\text{s}$

Localização: São Borja


Planta Baixa da Bacia de Acumulação

Escala: 1/7.500




CÁLCULO DO VOLUME DE ÁGUA					
COTAS	AREAS	VOLUMES PARCIAIS	VOLUMES TOTALS		
(m)	(m²)	(m³)	(m²)		
0,00	-				
1,00	9.139,69	4.569,84	4.569,84		
2,00	34.978,42	22.059,05	26.628,89		
3,00	67.531,92	51.255,17	77.884,06		
4,00	95.368,10	81.450,01	159.334,07		
5.00	130.434,57	112.901,34	272.235,41		
6.00	177.362,25	153.898,41	426.133,82		
7,00	214.772,30	196.067,28	622.201,10		
8,00	245.442,85	230.107,58	852.308,67		
8,30	257.889,92	75.499,92	927.808,59		

Escalas { Vertical: 1/100 Horizontal: 1/400

Planta Baixa do Maciço

BARRAGEM DE TERRA - OBRA NOVA MEMORIAL DESCRITIVO

LOCALIZAÇÃO

Localidade: Estância Alvorada- Barragem Alvorada- Quaraí RS

PROPRIETÁRIO

RESPONSÁBILIDADE TÉCNICA

VAZÃO MÁXIMA

Dados hidrológicos:

- Área da bacia contribuinte	(S)	3,70	km ²
- Área da bacia de acumulação	(H)	0,38	km ²
- Precipitação pluviométrica máx. em 24 h		0,30	m
Coeficiente de deflúvio	(B)	0.60	

Cálculo:

Fórmula empregada: Qmáx = (S x H x R) : 86.400,
 Qmáx =: 3700.000 x0,3 x 0,6: 86.400 = 7,70m³/s

VERTEDOURO

Lâmina d'águaLargura (seção trapezoidal)

(ho) 0,30 m (L) 35,00 m

Cálculo:

Fórmula empregada: L = Qmáx: (0,35 ho √2g ho),

L = 35,00: $(0,35 \times 0,3 \sqrt{2} \times 9,81 \times 0,3) = 33,00m$

Adotamos: L = 35,00m

CANAL DE FUGA

Dados:

Omáx:

b (desenvolvimento):

H (lámina d'água):

l (declividade):

0,008 m/m

Ø = 33,68°

Comprimento: 400,00 m

Área e perímetro da secção:

$$-A = b \times h + h^2 \cot \emptyset$$
. = 10,635m²
-B = b + 2h x cotgØ = 35,90m

Perimetro molhado:

- P = b + 2h
$$\sqrt{1 + \cot^2 \varnothing}$$
 = 36,08m

Raio hidráulico:

$$-R = A: P = 0.29$$

Velocidade de escoamento (fórmula de Bazin):

- c = 87 x
$$\sqrt{R}$$
): (m + \sqrt{R}) , com m = 1,3 (canais em terra) = 25,48
- V= c \sqrt{RI} = 25,48 X $\sqrt{0,29\times0,008}$ = 1,23 m/s

Velocidade crítica e compatibilidade de vazões:

-
$$Vc = 3,12 (\sqrt{A:B}) = 3,12 \text{ m/s}$$
 (regime tranquilo)
- $Qcf = A \times V = 18,05 \text{m}^3/\text{s} > Qm\acute{a}x$

A zona de implantação do canal de fuga apresenta-se bastante rochosa. A corrente líquida, proveniente do canal de fuga, praticamente escoará, sob leito rochoso até atingir o leito da sanga.

Calculo:

Fórmula empregada: R = 0,75xh+ (v²: 2 g), sendo

h = altura das ondas (m) v = velocidade das ondas produzidas pelos ventos (m/s)

Fórmula de Stevenson:

h = 0.75+ 0.34 VL - 0.26 VL sendo

L = 0.60 km (recuo do alague)

h = 0.75 + 0.34 \0.60- 0.26 \0.60= 0.78m

- Fórmula de Gaillard:

V = 1.50 + 2h = 1.50 + 2x 0.78 = 3.06m/s $R = 0.75 \times 0.78 + (3.06^2)$: 2x9.81 = 1.09mAdotado: 1,10m

MACIÇO

- No local de assentamento do maciço será executada decapagem a uma profundidade suficiente para retirar toda a camada superficial (terra vegetal). Sera construído um núcleo central constituído de uma cava, com as dimensões constante do projeto, a qual será enchida com solo compactado especial (argila). com baixo coeficiente de permeabilidade.
- Será executada compactação com rolo pé-de-carneiro, em camadas de, no máximo, 0,20 m de espessura.
- Talude de montante: terá uma inclinação de 1:3 será protegido com enrocamento de pedras irregulares com uma espessura de 0,30 m, calculada pela fórmula: c = C x V 2, com "C" para taludes de 1:3 igual a 0,028; " v" a velocidade das ondas, já calculadas: c = 0, 028x 3.062 ~ 0.30m
- Talude de jusante: terá uma inclinação de 1:2 sendo protegido ao pé com filtro (ver projeto). Será totalmente revestido com grama para proteção das intempéries. Está prevista a construção de um filtro de alívio para prevenir os efeitos de entubamento (piping) ocasionado pelo percolação da água pelas Carl Daine H de Abrei e Si fundações, conforme pode ser visto no projeto.

- Coroamento: Para determinação da largura do coroamento foi adotada a tormula:

 $b = 1,1 \sqrt{8,00} + 1 = 4,11m$, adotado: 4,00m

- Movimento de terra da barragem

- Altura do macico

- Comprimento do maciço

45.174,00m³ 8,00m 450.00m

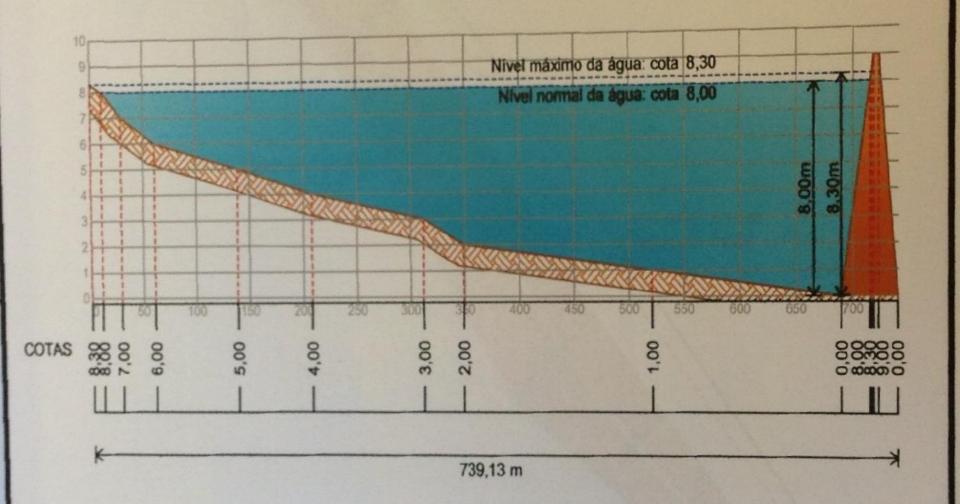
CARACTERÍSTICA DO RESERVATÓRIO

 Nível mínimo de água na cota: 	93.20	0,00m
- Nível normal de água na cota:	100.00	6,80m
- Nivel máximo de água na cota:	100,30	7,10m

Volume normal de água na cota 100,00

1.176.405,50 m³

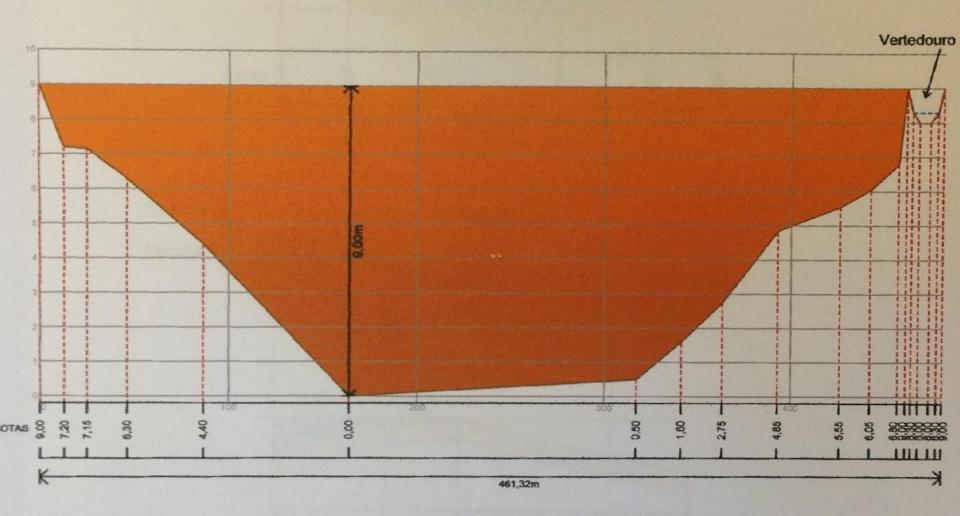
- Área a irrigar: 102,50 ha

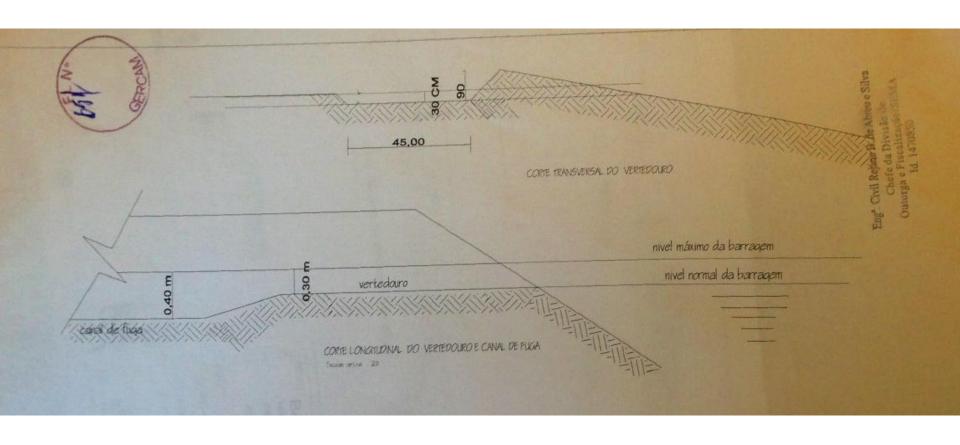

OBSERVAÇÕES

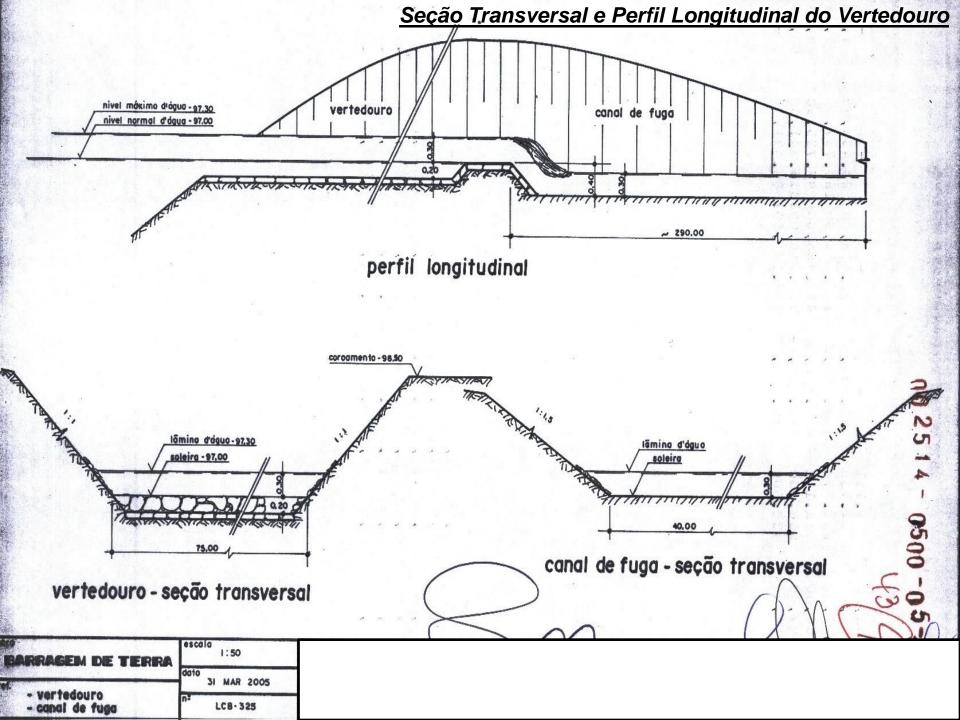
- As propriedades lindeiras não serão atingidas por nenhuma particularidade da obra (alague, maciço, canal de fuga, etc...).
 - A sanga onde se localiza a barragem não tem curso d'água permanente.

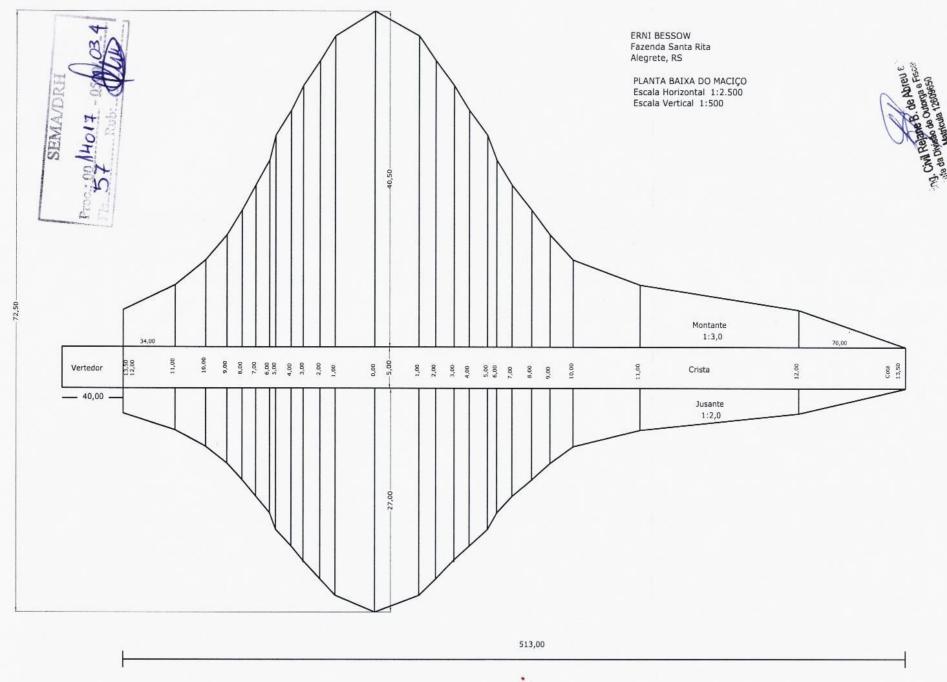
Perfil Longitudinal da Bacia de Acumulação

Corte A A' - Perfil Longitudinal da Bacia de Acumulação

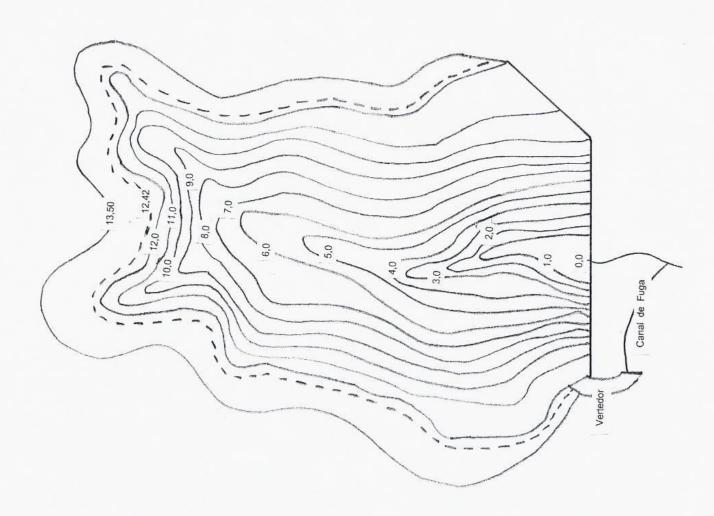

Escalas { Vertical: 1/250 Horizontal: 1/5.000

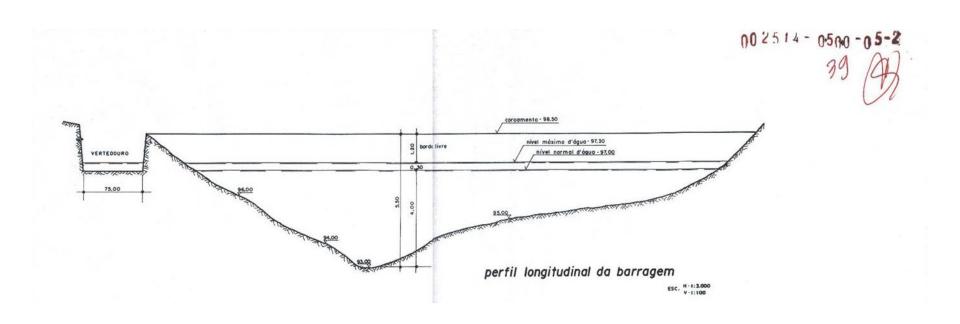

Perfil Longitudinal do Maciço


Corte C C' - Seção Longitudinal do Maciço

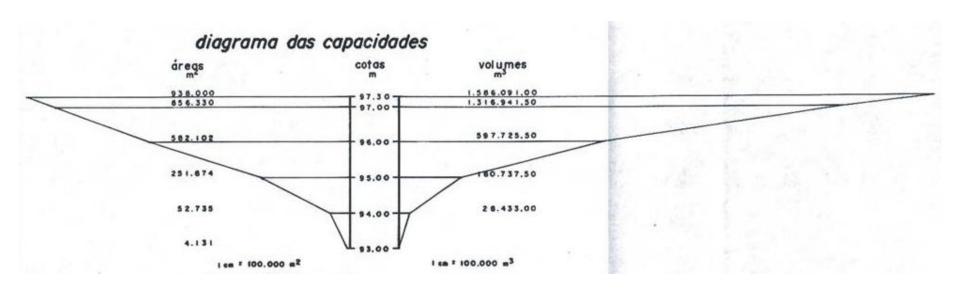

Escalas { Vertical: 1/150 Horizontal: 1/3.000

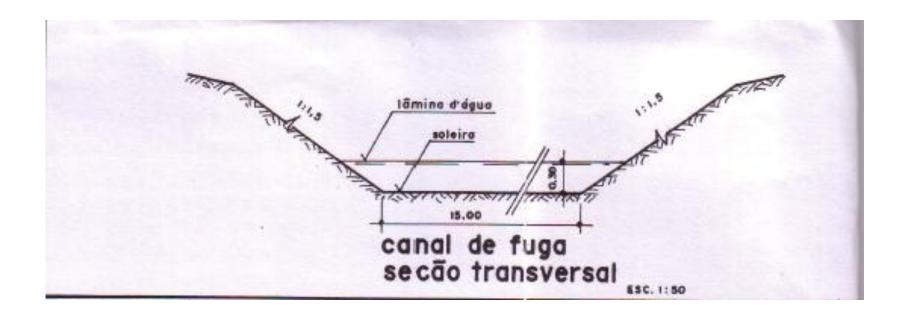
Seção Transversal e Perfil Longitudinal do Vertedouro

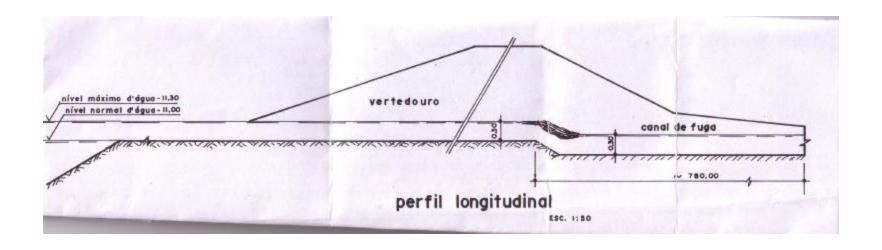


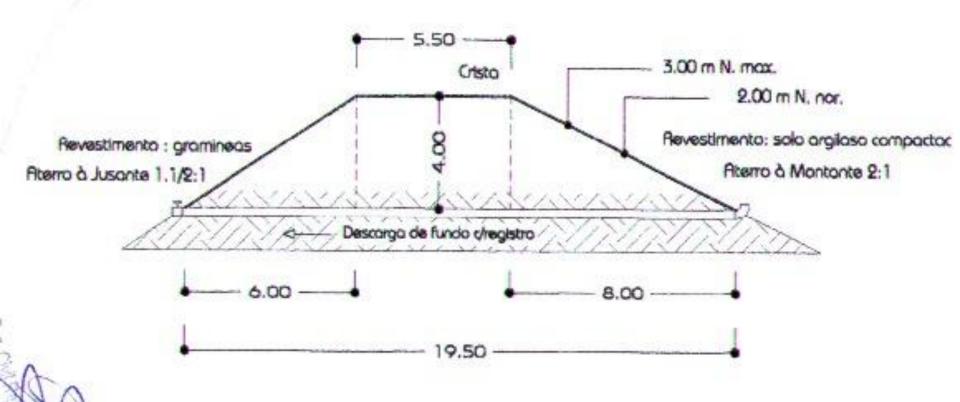

BACIA DE ACUMULAÇÃO - PLANTA BAIXA

1:5.000




Perfil longitudinal da Barragem

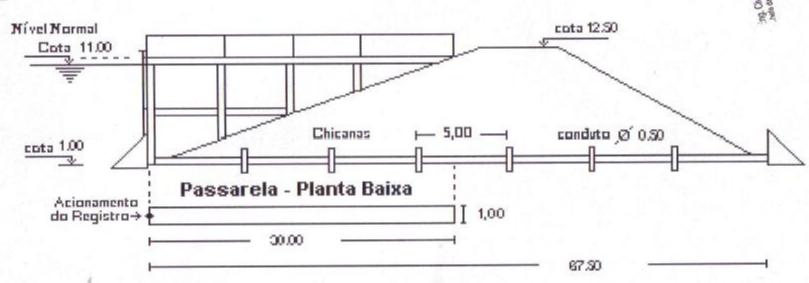

Capacidade do Lago



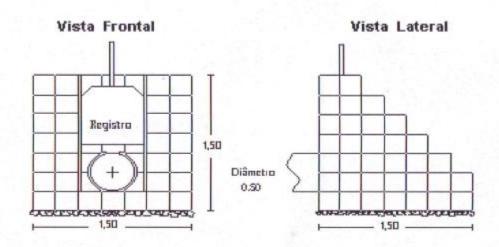
Seção Transversal e Longitudinal Canal de Fuga

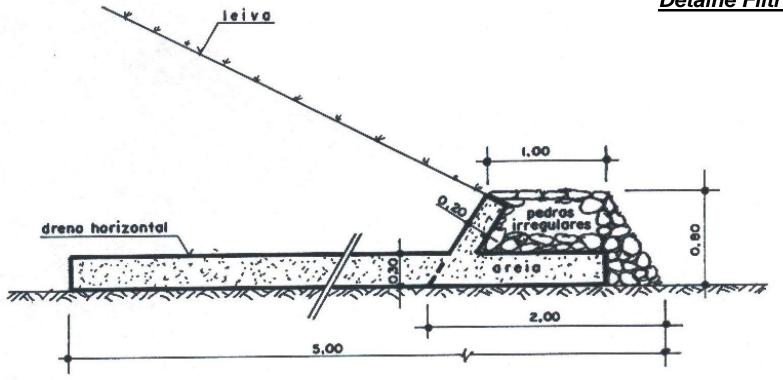
Seção Transversal e Longitudinal Canal de Fuga



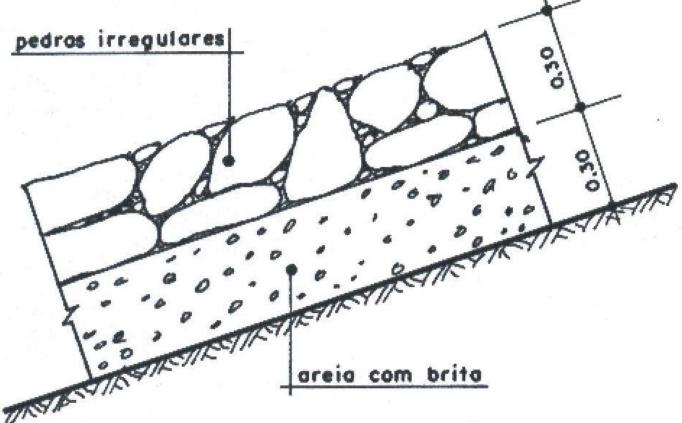

SEÇÃO TRANSVERSAL DO MACIÇO

ESCALA: 1/200


Sondagem


TOMADA DÁGUA - SEÇÃO TRANSVERSAL

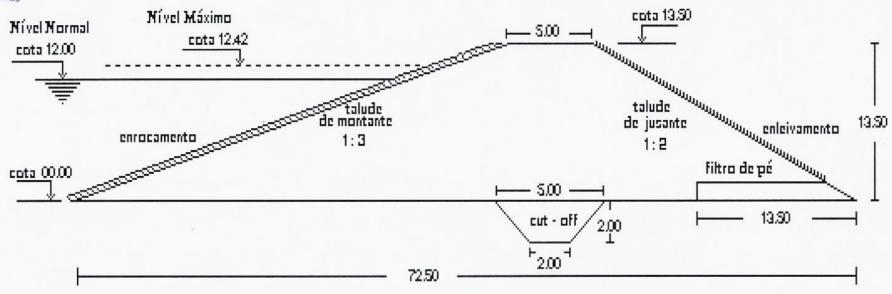
TOMADA DÁGUA - TERMINAIS DE MONTANTE E JUSANTE


Detalhe Filtro

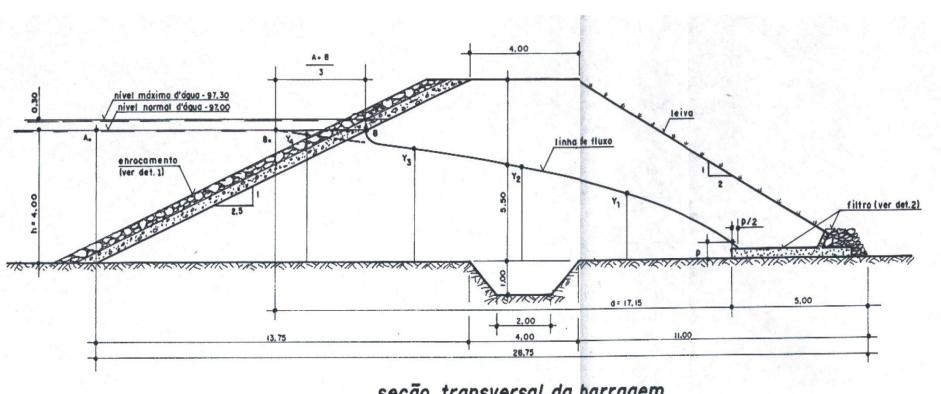
filtro detalhe 2

ESC. 1:50

Detalhe enrocamento



enrocamento detalhe 1


ESC. 1:25

MACIÇO - SEÇÃO TRANSVERSAL NA MAIOR ALTURA

Seção transversal na parte mais alta barragem

seção transversal da barragem

ESC. 1: 125

CÁLCULO DE ESTABILIDADE DO MACIÇO

BARRAGEM DE TERRA E AÇUDE

I - MEMORIAL DESCRITIVO

1 - Identificação

- Proprietário : PINHEIRINHO PINHEIRO

- Proprietário das Terras : O mesmo.

- Local : Inhanduí.

- Município : Alegrete, RS.

2 - Cálculo através do Método Sueco

De acordo com resultados de Análise de Solo fornecidos pela Fundação de Ciência e Tecnologia:

δ_s = massa específica aparente seca máxima = 1.556,0 kg/m³

h = umidade ótima = 21,8 %

σ = massa específica real dos grãos = 2.614,0 kg/m³

 $C = coesão = 18,79 \text{ kPa} = 0,1879 \text{ kg}/\text{cm}^2 = 1.879,00 \text{ kg}/\text{m}^2$

 θ = ângulo de atrito interno = 36,2 ° \Rightarrow tg θ = 0,732

2.1 - Os taludes serão considerados como estáveis para Fatores de Segurança iguais ou superiores a 1,5.

Fator de Segurança = FS =
$$\frac{(Cx L) + (N - U)x tg \theta}{2} \ge 1,5$$

L = perimetro de ruptura = $2 \pi R \Delta / 360$

R = raio do círculo de ruptura

Δ = ângulo central do círculo de ruptura

N = componente normal do peso de solo por metro de fatia

T = componente tangencial do peso de solo por metro de fatia

$$N = W \cos \alpha$$

$$T = W \operatorname{sen} \alpha$$

α = ângulo entre a vertical com origem no centro do círculo de ruptura e o raio que passa pelo centro da fatia

$$W = \delta x A$$
 (peso por metro de fatia)

A = área da fatia em m2

δ:
acima da linha freática = $δ_u$ ($δ_{umidade \'otimu}$)

$$\delta_u = \delta_s (1 + h) = 1.800,0 \text{ kg}/\text{m}^3$$

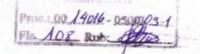
abaixo da linha freática = δ_{sat} ($\delta_{saturado}$)

$$\begin{array}{lll} \delta_{sat} = & \delta_{agus} \ x & n \ + \ \delta_s \\ \delta_{agus} = & 1.000 \ kg \, / \, m^3 \\ & n = porosidade = \ e \, / \, (\, 1 + e\,) \\ & e = \ indice \ de \ vazios = \ (\, \sigma \, - \, \delta_s \,) \, / \ \delta_s \\ & e = & 0.7686 & n = 0.4346 \end{array}$$

$$\delta_{sat} = 1.912,0 \text{ kg/m}^3$$

 $U = pressão neutra resultante = \delta_{agua} x h x b_o$

h = carga hidráulica na base da fatia


$$b_0 = 2 \pi R \psi / 360$$

R = raio do círculo de ruptura

ψ = ângulo entre os raios que passam pelas extremidades da fatia.

- É admitida como situação crítica o rebaixamento rápido do nível dágua desde o nível normal ao da comporta.
- O círculo de ruptura é locado no pé do talude, de acordo com indicações de Fellenius, sendo a seção considerada como homogênea.

And the state of t

3 - Talude de Montante

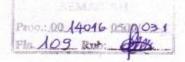
3.1 - Perímetro de ruptura

$$R = 32.46 \text{ m}$$

$$\Delta = 110,0$$

$$R = 32,46 \text{ m}$$
 $\Delta = 110,0 ^{\circ}$ $L = 62,31 \text{ m}$

3.2 - Determinação das componentes normais e tangenciais por metro de largura da fatia


Fatia	α (°)	W (kg/m)	N (kg/m)	T (kg/m)
1	57	13.650	7.434	11.447
2	47	86.967	59.311	63.603
3	35	152.283	124,742	87.345
4	25	183.585	166.384	77.586
5	16	189.437	182.098	52.215
6	6	183.276	182.271	19.157
7	2	169.225	169.121	-5,905
8	- 11	147.680	144.966	-28.178
9	20	118.197	111.068	-40.425
10	30	79.526	68.871	-39.763
11	39	28.838	22.411	-18.148
Σ			1.238.677	178.934

3.3 - Determinação da Pressão Neutra Resultante

Fatia	Ψ	b _o	h	U
	(°)	(m)	(m)	(kg/m)
1	9	5,1	444	
2	13	7,3	2,43	17.896
3	11	6,2	9,22	57.457
4	10	5,6	15,18	85.999
5	. 9	5,1	19,75	100.701
6	9	5,1	19,26	98.203
7	9	5,1	17,80	90.758
8	9	5,1	15,60	79.541
9	9	5,1	12,48	63.633
10	10	5,6	8,65	49.005
11	12	6,8	4,21	28.621
Σ				671.814

3.4 - Fator de Segurança

 $(1.879,0 \text{ kg/m}^2 \text{ x } 62,31 \text{ m}) + (1.238.677,0 \text{ kg/m} - 671.814,0 \text{ kg/m}) \times 0,732$

4 - Talude de Jusante

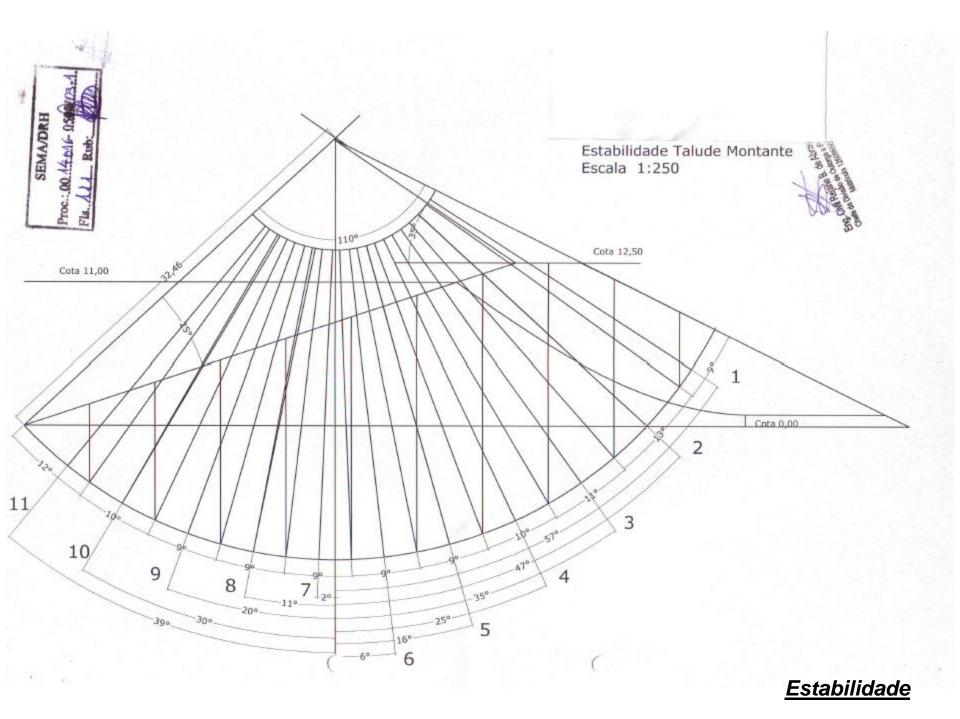
4.1 - Perímetro de ruptura

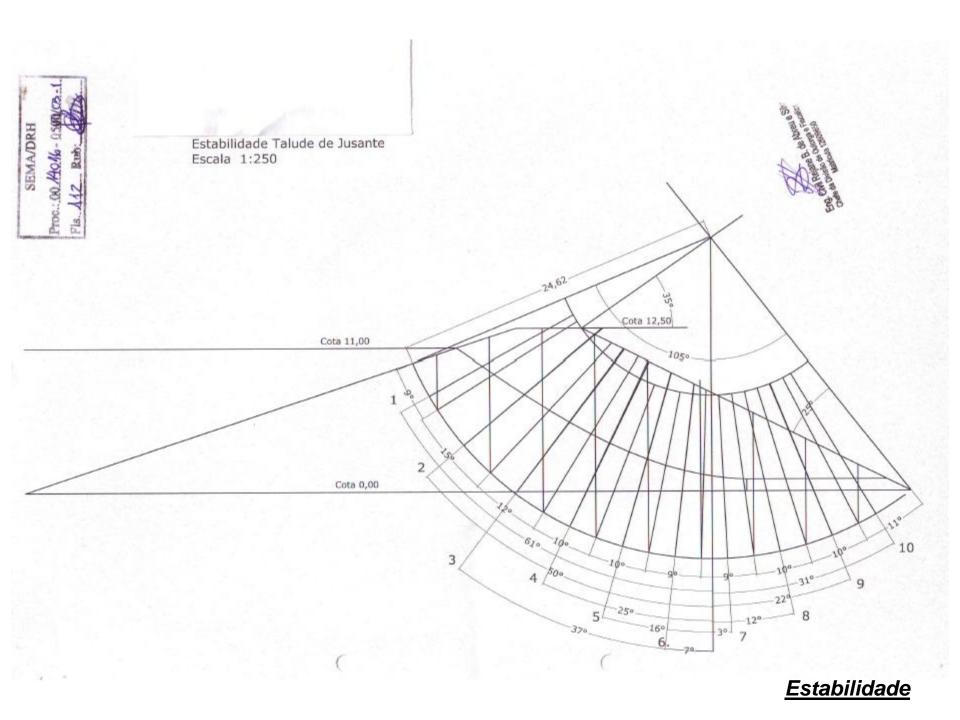
R = 24,62 m

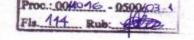
 $\Delta = 105.0^{\circ}$ L = 45.11 m

4.2 - Determinação das componentes normais e tangenciais por metro de largura da fatia

Fatia	α (°)	W (kg/m)	N (kg/m)	T (kg/m)
1	61	7.803	3.782	6.824
2	50	55.353	35.580	42.402
3	37	92.903	74.195	55.910
4	25	111.745	101.275	47.225
5	16	111.719	107.391	30.793
6	7	103.641	102.868	12.630
7	3	85.200	85.083	-4.459
8	12	71.066	69.513	-14.775
9	22	47.224	43.785	-17.690
10	31	16.934	14.515	-8.721
Σ	****	-	637.987	150.139


4.3 - Determinação da Pressão Neutra Resultante


Fatia	Ψ	b _o (m)	h (m)	U (kg/m)
	9	A STATE OF THE PARTY OF THE PAR	2.9	11.215
1		3,8		
2	15	6,4	7,1	45.763
3	12	5,1	8,1	41.766
4	10	4,3	8,0	34.376
5	10	4,3	7,5	32.227
6	9	3,8	6,8	26.297
7	9	3,8	6,2	23.977
8	10	4,3	4,7	20.195
9	10	4,3	3,4	14.609
10	11	4.7	1,8	8.508
Σ				258.933


4.4 - Fator de Segurança

 $(1.879,0 \text{ kg/m}^2 \text{ x } 24,62 \text{ m}) + (637.987,0 \text{ kg/m} - 258.933,0 \text{ kg/m}) \text{ x } 0,732$

10014/29021

ENSAIOS EM AMOSTRA DE SOLO

Cliente:		

Material ensaiado: uma amostra deformada de solo, entregue à CIENTEC e declarada pelo Cliente como procedente da Fazenda Santa Tereza, localidade de Guassu Bol, município de Alegrete/RS. No Laboratório de Mecânica de Solos da CIENTEC a amostra foi identificada com o número 10014/1.

Solicitação do Cliente: ensaio de compactação, determinação dos limites de liquidez e plasticidade, análise granulométrica, determinação da permeabilidade e ensaio de cisalhamento direto.

Data do recebimento do material: 17 de novembro de 2003.

Período da realização dos ensaios: 18 de novembro a 18 de dezembro de 2003.

Métodos:

- descrição do solo segundo ASTM D 2488/1993;
- compactação segundo NBR 7182/1988;
- limite de liquidez segundo NBR 6459/1984;
- limite de plasticidade segundo NBR 7180/1988;
- massa específica dos grãos segundo NBR 6508/1984;
- análise granulométrica segundo NBR 7181/1988;
- permeabilidade baseada no trabalho de BJERRUM, L. HUDER, J. Measurement of the Permeability of Compacted Clays. In: INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND FOUNDATION ENGINEERING, 4°, London, 1957. Proceedings... London, Butterworths, 1957. V.1, p.6-8;
- cisalhamento direto segundo ASTM D 3080/1990.

RESULTADOS:

A amostra de solo foi preparada com secagem prévia até a umidade higroscópica.

- Descrição e identificação do solo procedimento visual táctil
- CH (argila com areia de alta plasticidade);
- composição granulométrica com cerca de 25% areia fina à grossa, dimensão máxima de areia grossa e 75% de finos (partículas menores que 0,075mm);
- fração fina (partículas menores que 0,42mm), no estado úmido apresenta dilatância nula, alta tenacidade e alta plasticidade, no estado seco mostra resistência muito alta;
- reação nula com HCl e cor marrom escuro na condição úmida.

10014/29021

2 - Ensaio de compactação

A amostra, após o umedecimento, permaneceu por um período de 12 horas dentro de saco plástico, para uniformização da umidade de ensaio.

Foi aplicada a energia normal do proctor, sem reuso do material, na moldagem dos corpos-deprova em cilindros pequenos.

A curva de compactação e os resultados da massa específica aparente seca máxima $(\rho_{d \, (max.)})$ e umidade ótima (ω_{tt}) estão apresentados na Figura 1.

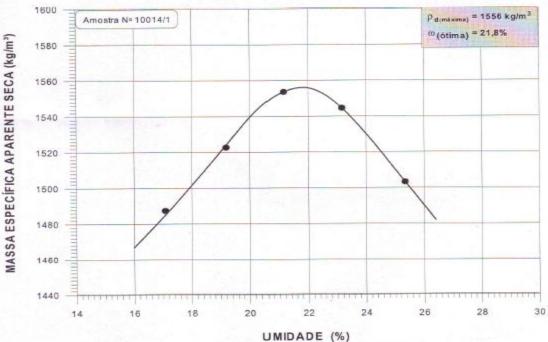


Figura 1 - Curva de compactação da amostra 10014/1.

10014/29021

Limite de liquidez (%): 48 Limite de plasticidade (%): 25 Índice de plasticidade (%): 23

4 - Análise granulométrica

É apresentada na Figura 2 a curva granulométrica com o respectivo resultado da massa específica dos grãos (ps).

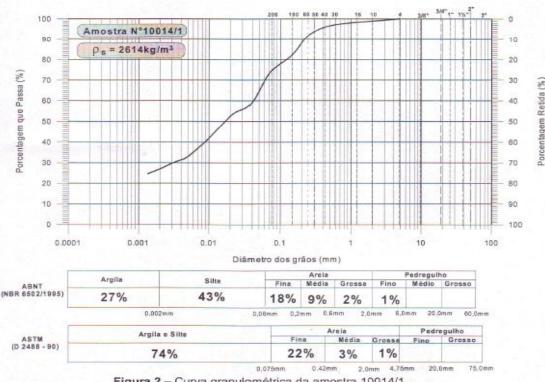


Figura 2 - Curva granulométrica da amostra 10014/1.

5 - Ensaio de permeabilidade

O corpo-de-prova contendo 100% em massa de material que passa na peneira 4,76mm (nº 4) foi moldado por pisoteamento, obedecendo-se à condição de 95% do grau de compactação (GC), definido como a relação entre a massa específica aparente seca (pd) do corpo-de-prova ensaiado e a massa específica aparente seca máxima (pd (max.)) do ensaio de compactação.

10014/29021

São apresentados, no Quadro 1, os índices físicos do corpo-de-prova e o valor do coeficiente de permeabilidade.

A variação de umidade ($\Delta\omega$) é a diferença entre a umidade de moldagem (ω) e a umidade ótima (ω (ω) do ensaio de compactação.

Quadro 1 - Índices físicos e coeficiente de permeabilidade.

Amostra	10014/1
Massa específica aparente seca (pa) kg/m³)	1478
Índice de vazios (e)	0,769
Grau de compactação (GC) (%)	95,0
Umidade de moldagem (ω) (%)	21,8
Variação de umidade (Δω) (%)	0,0
Coeficiente de permeabilidade (K _{20°C}) (cm/s)	1,77 x 10 ⁻⁷

6 - Ensaio de cisalhamento direto

A amostra foi ensaiada na condição inundada, apresentando na moldagem as dimensões de 6,0cm de diâmetro e 2,07cm de altura. A velocidade de ensaio foi de 0,016mm/minuto.

O corpo-de-prova contendo 100% em massa de material que passa na peneira 4,76mm (nº 4) foi moldado estaticamente, obedecendo-se à condição de 95% do grau de compactação (GC).

No Quadro 2 são apresentadas as tensões normais de ensaio com os seus correspondentes índices físicos iniciais e finais.

No Quadro 3 são apresentadas as tensões normais de ensaio com as suas correspondentes tensões cisalhantes de pico, deslocamentos horizontais e verticais na ruptura, bem como os parâmetros de resistência ao cisalhamento.

São apresentados, na forma gráfica, os seguintes resultados:

- variação de altura dos corpos-de-prova em função da raiz quadrada do tempo, relativos aos incrementos de tensões normais determinados em cada ensaio, na Figura 3;
- curva de tensão cisalhante em função do deslocamento horizontal na Figura 4;
- curva de deslocamento vertical em função do deslocamento horizontal na Figura 5;
- tensão cisalhante em função da tensão normal na Figura 6.

Quadro 2 - Índices físicos iniciais e finais da amostra 10014/1.

	o Normal) (kP _a)	5	0	10	00	15	50
3,000		Iniciais	Finais	Iniciais	Finais	Inicias	Finais
	m _d (g)	86,07	-	86,06	-	86,32	-
Índices	ω (%)	21,73	28,62	21,74	27,18	21,63	26,17
	Δω (%)	-0,07	-	-0,06	Į.	-0,17	-
Físicos	ρ _h (kg/m³)	1796	1961	1791	2038	1789	1960
	ρ _σ (kg/m³)	1475	1542	1471	1615	1471	1524
	GC (%)	94.8	-	94,5	-	94,5	141
	е	0,772	-	0,777	-	0,778	-
	S, (%)	73,56	-	73,13	-	72,73	

Quadro 3 - Resultados do ensaio de cisalhamento direto da amostra 10014/1.

Tensão normal (σ_n) (kPa)	Tensāo Cisalhante (τ) (kPa)	Deslocamento Horizontal (ΔH) (mm)	Deslocamento Vertical (ΔV) (mm)	Parâmetros de Resistência ao cisalhamento	
				Coesão (C) (kPa)	Ângulo de atrito interno (φ)(°)
50	53,64	3,80	-0,440	18,79	36,2
100	95,66	5,20	-0,620		
150	126,93	6,20	-0,583		

^{(+) =} expansão (-) = recalque

¹Kgf/cm² = 100KPa

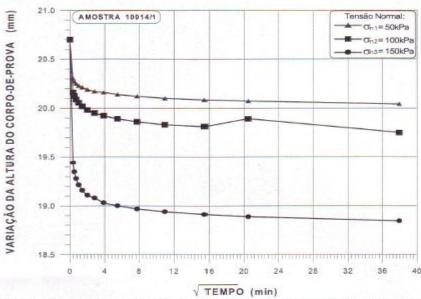


Figura 3 – Gráfico da variação da altura do corpo-de-prova em função da raiz quadrada do tempo da amostra 10014/1.

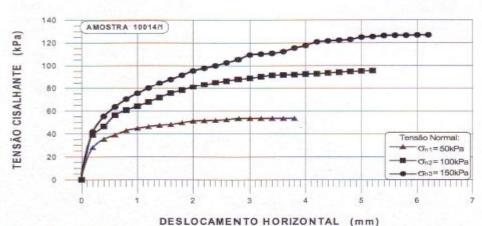


Figura 4 – Gráfico das tensões cisalhantes em função do deslocamento horizontal da amostra 10014/1.

10014/29021

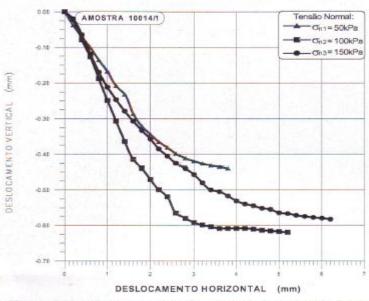


Figura 5 – Gráfico do deslocamento vertical em função do deslocamento horizontal da amostra 10014/1.

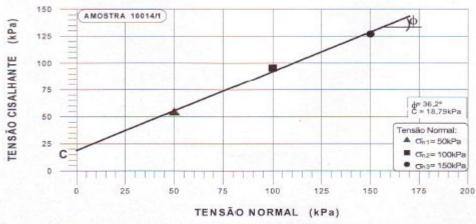
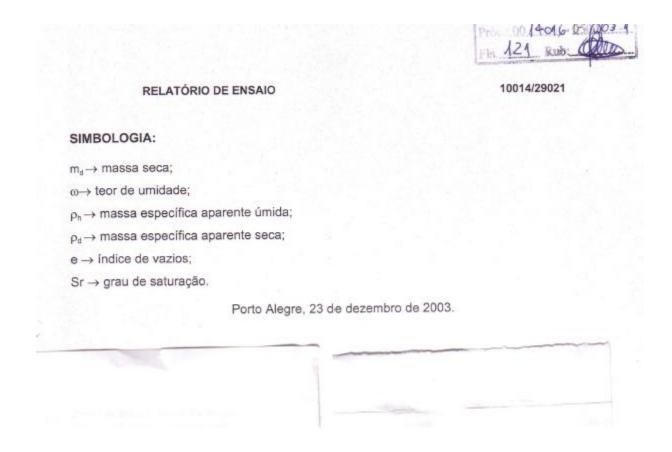



Figura 6 - Gráfico das tensões cisalhante em função da tensão normal da amostra 10014/1.

Ensaio de Sondagem barragem

